API Reference
Technical documentation for Tetrix AI MCP Server integration. This reference covers the MCP protocol implementation, available resources, tools, and message formats.
MCP Protocol Overview
Tetrix AI implements the Model Context Protocol (MCP) specification, providing standardized access to AI capabilities through any MCP-compatible client.
Connection Details
Endpoint: http://tetrix-level-1-dev-alb-463220232.us-east-1.elb.amazonaws.com/mcp
Transport: HTTP only
Authentication: None required (public endpoint)
Protocol Version: MCP 1.0
Basic Connection
npx -y mcp-remote@latest http://tetrix-level-1-dev-alb-463220232.us-east-1.elb.amazonaws.com/mcp --transport http-only --allow-http
Available Resources
Tetrix AI exposes several types of resources through the MCP interface:
Code Resources
Resource Type: tetrix://code/*
Access to codebase analysis and understanding:
{
"uri": "tetrix://code/analysis",
"name": "Code Analysis",
"description": "Comprehensive codebase analysis and insights",
"mimeType": "application/json"
}
Infrastructure Resources
Resource Type: tetrix://infrastructure/*
AWS and cloud infrastructure analysis:
{
"uri": "tetrix://infrastructure/aws",
"name": "AWS Infrastructure",
"description": "AWS resource analysis and optimization",
"mimeType": "application/json"
}
System Resources
Resource Type: tetrix://system/*
System-wide insights and recommendations:
{
"uri": "tetrix://system/health",
"name": "System Health",
"description": "Overall system health and status",
"mimeType": "application/json"
}
Available Tools
Code Analysis Tools
analyze_codebase
Analyze entire codebase structure and relationships.
Parameters:
{
"path": "string (optional)",
"language": "string (optional)",
"depth": "number (optional, default: 3)"
}
Example:
{
"name": "analyze_codebase",
"arguments": {
"path": "/src/components",
"language": "typescript",
"depth": 2
}
}
find_dependencies
Discover dependencies and relationships between code components.
Parameters:
{
"component": "string (required)",
"type": "string (optional: 'imports' | 'exports' | 'both')"
}
detect_patterns
Identify architectural patterns and anti-patterns.
Parameters:
{
"scope": "string (optional: 'file' | 'directory' | 'project')",
"pattern_type": "string (optional)"
}
Infrastructure Tools
analyze_aws_resources
Analyze AWS infrastructure and provide optimization recommendations.
Parameters:
{
"service": "string (optional)",
"region": "string (optional)",
"cost_analysis": "boolean (optional, default: true)"
}
security_assessment
Perform security analysis of infrastructure and code.
Parameters:
{
"scope": "string (required: 'code' | 'infrastructure' | 'both')",
"severity": "string (optional: 'low' | 'medium' | 'high' | 'critical')"
}
Expert Agent Tools
consult_expert
Access specialized expert agents for domain-specific advice.
Parameters:
{
"domain": "string (required)",
"query": "string (required)",
"context": "object (optional)"
}
Available Domains:
architecture
- System design and architectural patternsdevops
- Infrastructure and deploymentsecurity
- Security analysis and recommendationsperformance
- Performance optimizationdatabase
- Database design and optimization
Message Formats
Request Format
Standard MCP request format:
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"method": "tools/call",
"params": {
"name": "tool_name",
"arguments": {
"parameter": "value"
}
}
}
Response Format
Standard MCP response format:
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"result": {
"content": [
{
"type": "text",
"text": "Response content"
}
],
"isError": false
}
}
Error Format
Error responses follow MCP error format:
{
"jsonrpc": "2.0",
"id": "unique-request-id",
"error": {
"code": -32000,
"message": "Error description",
"data": {
"details": "Additional error information"
}
}
}
Server Capabilities
Initialization
When connecting to Tetrix AI MCP Server, the following capabilities are announced:
{
"capabilities": {
"resources": {
"subscribe": true,
"listChanged": true
},
"tools": {
"listChanged": true
},
"prompts": {
"listChanged": false
},
"logging": {
"level": "info"
}
},
"serverInfo": {
"name": "tetrix-ai-mcp-server",
"version": "1.0.0",
"description": "Tetrix AI MCP Server for system-wide intelligence"
}
}
Supported Operations
- ✅ Resource Listing:
resources/list
- ✅ Resource Reading:
resources/read
- ✅ Tool Listing:
tools/list
- ✅ Tool Calling:
tools/call
- ✅ Server Info:
initialize
- ❌ Prompts: Not implemented
- ❌ Sampling: Not implemented
Client Libraries
JavaScript/TypeScript
import { MCPClient } from '@modelcontextprotocol/client';
const client = new MCPClient({
transport: 'http',
url: 'http://tetrix-level-1-dev-alb-463220232.us-east-1.elb.amazonaws.com/mcp'
});
// Connect to server
await client.connect();
// List available tools
const tools = await client.request('tools/list');
// Call a tool
const result = await client.request('tools/call', {
name: 'analyze_codebase',
arguments: { path: '/src' }
});
Python
from mcp_client import MCPClient
client = MCPClient(
transport='http',
url='http://tetrix-level-1-dev-alb-463220232.us-east-1.elb.amazonaws.com/mcp'
)
# Connect to server
await client.connect()
# List available tools
tools = await client.request('tools/list')
# Call a tool
result = await client.request('tools/call', {
'name': 'analyze_codebase',
'arguments': {'path': '/src'}
})
Rate Limits
Current rate limits for the public endpoint:
- Requests per minute: 60
- Concurrent connections: 10
- Request timeout: 30 seconds
- Response size limit: 10MB
Error Codes
Common error codes and their meanings:
Code | Name | Description |
---|---|---|
-32000 | ServerError | Generic server error |
-32001 | InvalidRequest | Invalid request format |
-32002 | MethodNotFound | Requested method not available |
-32003 | InvalidParams | Invalid method parameters |
-32004 | InternalError | Internal server error |
-32005 | ParseError | JSON parsing error |
-32006 | Timeout | Request timeout |
-32007 | RateLimited | Rate limit exceeded |
Examples
Complete Integration Example
// Complete example of integrating Tetrix AI MCP Server
import { MCPClient } from '@modelcontextprotocol/client';
class TetrixAIClient {
constructor() {
this.client = new MCPClient({
transport: 'http',
url: 'http://tetrix-level-1-dev-alb-463220232.us-east-1.elb.amazonaws.com/mcp',
timeout: 30000
});
}
async connect() {
try {
await this.client.connect();
console.log('Connected to Tetrix AI MCP Server');
// Get server capabilities
const capabilities = await this.client.request('initialize');
console.log('Server capabilities:', capabilities);
return true;
} catch (error) {
console.error('Connection failed:', error);
return false;
}
}
async analyzeCode(path = '.') {
try {
const result = await this.client.request('tools/call', {
name: 'analyze_codebase',
arguments: { path, depth: 2 }
});
return result.content[0].text;
} catch (error) {
console.error('Code analysis failed:', error);
throw error;
}
}
async getAWSInsights() {
try {
const result = await this.client.request('tools/call', {
name: 'analyze_aws_resources',
arguments: { cost_analysis: true }
});
return result.content[0].text;
} catch (error) {
console.error('AWS analysis failed:', error);
throw error;
}
}
async consultExpert(domain, query) {
try {
const result = await this.client.request('tools/call', {
name: 'consult_expert',
arguments: { domain, query }
});
return result.content[0].text;
} catch (error) {
console.error('Expert consultation failed:', error);
throw error;
}
}
async disconnect() {
await this.client.disconnect();
console.log('Disconnected from Tetrix AI MCP Server');
}
}
// Usage example
async function main() {
const tetrix = new TetrixAIClient();
if (await tetrix.connect()) {
// Analyze codebase
const codeAnalysis = await tetrix.analyzeCode('/src');
console.log('Code Analysis:', codeAnalysis);
// Get AWS insights
const awsInsights = await tetrix.getAWSInsights();
console.log('AWS Insights:', awsInsights);
// Consult architecture expert
const expertAdvice = await tetrix.consultExpert(
'architecture',
'How can I improve the scalability of my microservices?'
);
console.log('Expert Advice:', expertAdvice);
await tetrix.disconnect();
}
}
main().catch(console.error);
Best Practices
1. Connection Management
- Reuse connections when possible
- Implement proper error handling and reconnection logic
- Close connections when done
2. Request Optimization
- Batch related requests when possible
- Use appropriate timeout values
- Handle rate limits gracefully
3. Error Handling
- Always handle MCP errors appropriately
- Implement retry logic for transient failures
- Log errors for debugging
4. Security
- Never expose sensitive data in requests
- Validate all inputs before sending to MCP server
- Monitor for unusual usage patterns
Changelog
Version 1.0.0 (Current)
- Initial MCP Server implementation
- Basic code analysis tools
- AWS infrastructure analysis
- Expert agent consultation
- HTTP transport support
Planned Features
- WebSocket transport support
- Enhanced security features
- Additional expert domains
- Batch processing capabilities
- Custom resource types
Need help? Check our troubleshooting guide or ask in our GitHub discussions .